Р

WORKSHEET #5

Two charges are situated near point P. The angle θ is 29.0°. q₁ = 1.35 μC. The potential difference at point P is 6.75x10⁴ V. Find the charge q₂.

3. An electric field has a value of 9.50x10⁶ N/C. A positive test charge of 22.5 μC is placed in the field. What force does the charge experience?

 $F = qE = 22.5 \times 10^{-6} C \cdot 9.50 \times 10^{6} N/C = 213.75 N = 214 N$

4. Through what potential difference would an electron need to accelerate to achieve a velocity of 1.00x10⁷ m/s?

```
\Delta U_{\rm E} = \Delta KE
qV = \frac{1}{2} mv<sup>2</sup>
V = \frac{1}{2} mv<sup>2</sup>/q = 0.5 · 9.11×10<sup>-31</sup> kg · (1.00×10<sup>7</sup> m/s)<sup>2</sup>/1.6×10<sup>-19</sup> C = 284.6875 V = 285 V
```

5. An electron is fired into the midpoint of a field between two charged plates. The initial velocity of the electron is 3.6x10⁶ m/s. The plates are a distance of 1.60 mm apart. The potential difference for the plates is 120.0 V. Determine where the electron will hit on the upper plate.

E = V/d = 120.0 V/0.00160 m = 75 000 V/m $F = qE = 1.6 \times 10^{-19} C \cdot 75 000 N/C = 1.20 \times 10^{-14} N$ $a = F/m = 1.20 \times 10^{-14} N/9.11 \times 10^{-31} kg = 1.3172338 \times 10^{16} m/s^{2}$ $d_{y} = 1/2at^{2}$ $t = (2d/a)^{\frac{1}{2}} = (2 \cdot 0.0008 m/1.3172338 \times 10^{16} m/s^{2})^{\frac{1}{2}} = 3.4852 \times 10^{-10} s$ $d_{x} = v \cdot t = 3.6 \times 10^{6} m/s \cdot 3.4852 \times 10^{-10} s$ = 0.00124567 m = 0.00125 m or 1.25 mm into the space between the plates

6. Two masses are set up as shown. The angle θ that m_1 makes with the vertical is 38.0°. m_1 is 552 g, m_2 is 455 g. m_1 is released, swings down and collides with the other mass. At the point of impact, the string holding up m_1 is vertical and it hits the other ball head on. m_1 ends up with a velocity to the right of 0.500 m/s. Find: (a) the potential energy of m_1 relative to the top of the table, (b) the speed of m_2 after the collision, (c) the distance x that the ball travels before it hits the deck, and (d) the kinetic energy of m_2 just before it hits the deck.

